Systematic misperceptions of 3-D motion explained by Bayesian inference
نویسندگان
چکیده
People make surprising but reliable perceptual errors. Here, we provide a unified explanation for systematic errors in the perception of three-dimensional (3-D) motion. To do so, we characterized the binocular retinal motion signals produced by objects moving through arbitrary locations in 3-D. Next, we developed a Bayesian model, treating 3-D motion perception as optimal inference given sensory noise in the measurement of retinal motion. The model predicts a set of systematic perceptual errors, which depend on stimulus distance, contrast, and eccentricity. We then used a virtual-reality headset as well as a standard 3-D desktop stereoscopic display to test these predictions in a series of perceptual experiments. As predicted, we found evidence that errors in 3-D motion perception depend on the contrast, viewing distance, and eccentricity of a stimulus. These errors include a lateral bias in perceived motion direction and a surprising tendency to misreport approaching motion as receding and vice versa. In sum, we present a Bayesian model that provides a parsimonious account for a range of systematic misperceptions of motion in naturalistic environments.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملInference of Markov Chain: AReview on Model Comparison, Bayesian Estimation and Rate of Entropy
This article has no abstract.
متن کاملImplementation of Traditional (S-R)-Based PM Method with Bayesian Inference
In order to perform Preventive Maintenance (PM), two approaches have evolved in the literature. The traditional approach is based on the use of statistical and reliability analysis of equipment failure. Under statistical-reliability (S-R)-based PM, the objective of achieving the minimum total cost is pursued by establishing fixed PM intervals, which are statistically optimal, at which to replac...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017